On the robustness of backward stochastic differential equations
نویسندگان
چکیده
منابع مشابه
Backward Stochastic Differential Equations on Manifolds
The problem of finding a martingale on a manifold with a fixed random terminal value can be solved by considering BSDEs with a generator with quadratic growth. We study here a generalization of these equations and we give uniqueness and existence results in two different frameworks, using differential geometry tools. Applications to PDEs are given, including a certain class of Dirichlet problem...
متن کاملBackward Stochastic Differential Equations on Manifolds II
In [1], we have studied a generalization of the problem of finding a martingale on a manifold whose terminal value is known. This article completes the results obtained in the first article by providing uniqueness and existence theorems in a general framework (in particular if positive curvatures are allowed), still using differential geometry tools.
متن کاملAnticipated Backward Stochastic Differential Equations
In this paper, we discuss a new type of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also the future. We show that these anticipated BSDEs have unique solutions, a comparison theorem for their solutions, and a duality between them and ...
متن کاملHarmonic Analysis of Stochastic Equations and Backward Stochastic Differential Equations
The BMOmartingale theory is extensively used to study nonlinear multi-dimensional stochastic equations (SEs) inRp (p ∈ [1,∞)) and backward stochastic differential equations (BSDEs) in Rp × Hp (p ∈ (1,∞)) and in R∞ × H∞, with the coefficients being allowed to be unbounded. In particular, the probabilistic version of Fefferman’s inequality plays a crucial role in the development of our theory, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2002
ISSN: 0304-4149
DOI: 10.1016/s0304-4149(01)00131-4